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Abstract

Realistic speech synthesis through generative adversar-
ial networks has garnered significant attention in recent
years, primarily in the context of vocoder models that con-
vert spectrograms into audio waveforms. However, the
development of fully end-to-end text-to-speech systems re-
mains challenging, with only a few attempts currently doc-
umented in the literature. Our contribution leverages mono-
tonic alignment search to address the challenges of un-
aligned input-output sequences, enabling robust phoneme-
to-audio mapping in a fully differentiable manner. The gen-
erator incorporates a Transformer-based encoder-decoder
generator and hierarchical discriminators that operate on
both raw audio waveforms and mel spectrograms. Our
approach, which fuses the best practices across end-to-
end text-to-speech literature, achieves audio quality on par
with popular approaches that rely on spectrogram stop-
gaps. We further demonstrate the symbiotic relationship
that this end-to-end approach has with pretrained natu-
ral language foundation models and extra supervision de-
rived from nonparametric methods. The implementation
for this work can be found at https://github.com/
vliu15/adversarial-tts.

1 Introduction
Synthesizing realistic and natural speech remains one of the
most compelling challenges in artificial intelligence. Re-
cent advances in generative models, particularly genera-
tive adversarial networks (GANs), have catalyzed signifi-
cant progress in the field of text-to-speech (TTS) synthe-
sis [3, 1, 4, 22]. Traditionally, the TTS pipeline involves
a multi-stage process, where intermediate representations,
such as spectrograms, act as stopgaps between text process-
ing and audio waveform generation [10, 17, 23, 18]. This
multi-step paradigm, while effective, introduces cascading

errors, increases inference latency, and constrains the flex-
ibility and adaptability of TTS systems. Fully end-to-end
TTS systems, which directly map textual input to audio
waveforms, represent an emerging direction that holds the
promise of overcoming these limitations by streamlining
the pipeline and enhancing the naturalness of synthesized
speech [4, 16, 24].

Despite their potential, end-to-end TTS systems remain
underexplored, with most existing solutions struggling to
address key challenges. One primary obstacle is the align-
ment problem: the need to effectively match phonetic or
linguistic features from text to temporal acoustic features in
the audio. This problem exists in tex-to-spectrogram mod-
els, but the one-to-many problem is exacerbated when mod-
eling raw audio waveforms directly, as a single phoneme
can correspond to thousands of audio samples. In traditional
systems, explicit alignment mechanisms, such as forced
aligners or external duration models, are often used to man-
age this correspondence [17, 28]. However, these methods
introduce reliance on additional models, breaking the dif-
ferentiability of the pipeline and complicating training.

Another challenge lies in the generation of high-quality
waveforms. GAN-based methods have demonstrated re-
markable success in vocoders [15, 11], where the focus is
on converting spectrograms to waveforms. However, these
methods condition on frequency inputs like spectrograms,
and so the issues of mode collapse, difficulty in generating
fine-grained temporal details, and the lack of robust adver-
sarial TTS objectives are much more difficult. These limi-
tations are further compounded by the need to model both
short-term spectral features and long-term prosodic varia-
tions, which are critical for capturing the natural rhythm,
intonation, and expressiveness of human speech.

In this work, we aim to bridge these gaps by developing
a novel end-to-end TTS system that combines the strengths
of monotonic alignment search [10] with recent advance-
ments in adversarial training [4, 11]. Monotonic align-
ment search provides a robust mechanism for phoneme-
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to-audio mapping by dynamically aligning input-output se-
quences in a fully differentiable manner. Unlike traditional
forced aligners, this approach is end-to-end differentiable,
enabling joint optimization of all components. Our work
makes the following contributions:

1. We consolidate and extend best practices from the TTS
literature, offering a unified framework that achieves
high-quality audio synthesis while maintaining the
simplicity and efficiency of an end-to-end design.

2. We demonstrate on LJSpeech dataset [9] that our sys-
tem achieves audio quality comparable to established
methods that rely on intermediate representations.

3. We ablate non-parameteric supervision and leverage
unsupervised pretrained modules to show how to boot-
strap the pure end-to-end setup symbiotically with
other scaling paradigms in Table 1.

2 Related Work
The current TTS literature can be broken down into spec-
trogram predictors, vocoders, and end-to-end methods that
aim to learn these two components simultaneously.

Spectrogram Predictors. Spectrogram-based TTS sys-
tems, which transform text into spectrograms, have domi-
nated TTS research for many years, as these could plug into
non-parametric spectrogram inversion methods to recon-
struct audio reasonably well [5]. These methods often rely
on text conversion to phonemes with the CMU Pronouncing
Dictionary [19], as phonemes contain more comprehensive
acoustic cues than characters and letters do. To align tex-
tual and spectrogram sequences, [23, 18] introduce atten-
tion mechanisms to align textual and acoustic sequences,
enabling high-quality spectrogram generation. These sys-
tems rely on vocoders to synthesize waveforms from spec-
trograms [20]. Despite their success, spectrogram-based ap-
proaches suffer from inefficiencies and cascading errors due
to the multi-stage pipeline. Other works address these is-
sues by explicitly modeling duration and prosody, making
the spectrogram generation faster and more robust [17, 16].
However, explicitly predicting the alignment with a dura-
tion predictor module relies on external annotation of the
duration of each phoneme, which further introduces sources
of error. Flow-based models like [10] further improve the
differentiability of the pipeline by integrating monotonic
alignment search for sequence mapping. [12] also explore
adversarial methods for modeling spectrogram from text.

Vocoders. Vocoder models invert spectrograms into
high-quality waveforms. Spectrograms are frequency-space
representations of audio signals, generated from short-time
Fourier transformations. As a result, they are downsam-
pled but aligned temporally with the original audio wave-
form, making the inversion process easier than their gener-
ation from text input. Early vocoding approaches A popu-

lar vocoder is WaveNet [20], an autoregressive generative
model. Because of the high frequency of audio samples,
autoregressive sampling is extremely slow and most TTS
applications need to be real-time. To parallelize audio gen-
eration, [21] distills WaveNet into a student network that is
fully parallel and [26] adapts the WaveNet architecture to
train a fully parallel GAN. However, these parallel adapta-
tions of WaveNet do not usually exceed the quality of the
original autoregressive WaveNet itself. Another paradigm
of parallel spectrogram inversion relies on deep normalizing
flow networks, which map a standard Gaussian volume into
another probabilistic volume of audio waveforms [15, 27].
However, these networks often have to be quite deep in or-
der to learn this complex probability density mapping and
end up being quite slow in order to be at the par of WaveNet.
These reasons are why the adversarial framework has be-
come extremely popular, as GANs are simple feedforward
models that are computationally expensive during training
but relatively lightweight in inference [11]. These models
excel at capturing fine-grained acoustic details while reduc-
ing computational overhead, making them suitable for real-
time applications.

End-to-End Models. A recent paradigm in text-to-
speech is to skip the spectrogram generation and model raw
audio waveform directly from text. Early end-to-end TTS
models replace spectrograms with latent representations to
demonstrate the feasibility of direct synthesis [24]. [4]
extend this idea with an adversarial framework, achieving
improved naturalness and robustness [4]. However, these
models face significant challenges, such as alignment and
waveform fidelity. Monotonic alignment search [10] pro-
vides a robust solution for sequence alignment in end-to-
end pipelines. [16] get address the difficulty of learning
frequency information by introducing a variance adaptor,
which is supervised to predict phonemic duration, pitch,
and energy, which is used to decode out the audio wave-
form. Other end-to-end approaches rely on modeling a dis-
cretized latent space, which leverage self-supervised learn-
ing on unpaired datasets and benefit from developments in
sequence-to-sequence learning in natural language process-
ing [7].

3 Method
Similar to [4] and [24], our goal is to learn a neural network
generator that maps an input sequence of phonemes to raw
audio at 22.05 kHz. Because of the vastly different lengths
of the input and output signals with no ground truth align-
ment, we adopt the monotonic aligner method proposed in
[4]. Below, we discuss our architecture and training proce-
dure in detail.

2



Figure 1: A visualization of the forward pass from phonem-
ization, duration prediction, and the sequence-to-sequence
softmax-weighted averaging of phonemic embeddings into
waveform embeddings. The numbers represent the pre-
dicted duration of each phoneme in deciseconds, and the
t axis on the bottom represents the temporal dimension of
the aligned output waveform activations.

3.1 Generator

The generator is a feed-forward network consisting of an
encoder, aligner, and decoder. Its feed-forward nature al-
lows for fast, batched inference, a desirable trait in text-to-
speech models. At a high level, the encoder outputs a la-
tent vector for each phoneme, as well as a scalar indicating
its duration. The predicted durations are used to monoton-
ically interpolate the sequence of latent vectors to a lower
frequency that the decoder ingests and upsamples to full fre-
quency.

Encoder. Unlike [4], we opt for Transformer layers as in
[10] over stacked dilated convolutions in the encoder, as is
common in sequential text processing. To this end, we also
adopt Gaussian Error Linear Units (GELU) as our activa-
tion functions, which provide more gradient flow and boost
in performance [6]. The self-attention mechanism is able
to model long- and short-term dependencies between input

phonemes more explicitly than convolutions, which allows
us to construct shallower models with the same expressivity.
Unlike [10], we use masked layer normalization to prevent
padded positions from affecting the statistics of each layer,
though the difference in performance is trivial. As men-
tioned above, the encoder outputs mean and log variance
vectors for each phoneme as well the corresponding dura-
tions. We use the reparameterization trick to sample from
these distributions.

Aligner. To model the alignment between phonemes and
their corresponding waveform timesteps, we use the mono-
tonic aligner proposed in [4], which interpolates the latent
vectors from the encoder with the predicted durations using
a Gaussian kernel of temperature σ2 = 10. See Figure 2 for
a visualization and description of how this module performs
alignment.

Decoder. The decoder then takes this interpolated se-
quence of vectors and upsamples them across a series of
residual blocks. Similar to [4], we adapt the generator ar-
chitecture from [1], but adjust the upsampling factors to be
whole factors of the target frequency (22.05 kHz) of our
dataset. We also use GELU activations here.

3.2 Discriminator

There are two discriminators: one that operates on audio
waveforms and one that operates on its corresponding mel
spectrogram. Note that the generator outputs raw wave-
forms and the mel spectrogram is simply extracted from
it by computing short-time Fourier transform and applying
mel filters to transformer output. Architectural details can
be found in the Appendix.

Audio Discriminator. Random window discriminators
have been proven to be effective at learning distinctions be-
tween real and synthetic audio [1, 4]. Like [4], we apply
a set of unconditional random window discriminators that
each operate on different lengths of audio using residual
blocks from [1].

Spectrogram Discriminator. Similar to [4], we adopt
a discriminator that operates on the mel spectrograms com-
puted from input audio. Unlike [4], we replace 2D convo-
lutions with 1D convolutions, framing the spectrogram dis-
criminator as a sequence rather than an image. Following
[22, 8], we adopt a multi-scale architecture for the spec-
trogram discriminator, which outputs a matrix of scores for
each resolution.

3.3 Objective Function

We use a composite loss function to optimize all networks
end-to-end. All losses are summed with the exception of
the length loss, which is scaled by 0.1 before being summed
with the other losses.

Latent loss. We impose a KL divergence loss on the la-
tent vectors from the encoder to encourage the distributions
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Figure 2: A visualization of the alignment module, which
aggregates the sequence of phoneme embeddings into a se-
quence of audio samples via duration predictions. The x
axis represents the phonemes, whose representations are
place at the cumulative duration centers predicted by the du-
ration predictor (represented as a dark vertical line). Their
representations are decayed from the center with a Gaus-
sian kernel, similar to [4], and these scaled phonemes are
averaged via softmax sum into each position of the output
sequence, represented as s′. This output sequence is then
upsampled and decoded into the raw audio waveform.

corresponding to each phoneme to be close to a standard
multivariate Gaussian.

Llatent = µ2
x + σ2

x − log σ2
x − 1 (1)

where µx, log σ2
x are the phonemic statistics outputted by

the encoder.
Length loss. Because we have no access to ground truth

alignment, the only duration loss we can impose is with re-
spect to the total duration. Thus,

Llength =

(
lŷ −

lx∑
i=0

l̂iŷ

)2

(2)

where lŷ is the total audio length and l̂iŷ is the predicted
length for phoneme i. Both quantities refer to the audio
length at the low-frequency of the aligner output.

Prediction loss. As in [4], we apply soft dynamic time
warping loss (SDTW) [2] to the real and synthetic spectro-
grams with a warping penalty of 1. This alone, however, is
not enough for the model to learn alignment so we weight
it against an L1 loss. Thus, for a synthesized ẑ from the
model and ground truth z, the prediction loss becomes

Lprediction = αiLhard + (1− αi)Lsoft (3)

where
Lhard = |z − ẑ| (4)

and
Lsoft = SDTW(ẑ, z) = r−1,−1 (5)

Following notation from [2], ri,j is the accumulated cost at
ẑi and zj and δ(ẑi, zj) is the L1 distance between ẑi and zj .
ri,j can be computed recursively with dynamic program-
ming.

ri,j = δ(ẑi, zj)

− γ log
[
e
−
ri−1,j+ω

γ + e
−
ri,j−1+ω

γ + e
−
ri−1,j−1

γ

]
(6)

The computational complexity of this soft alignment table is
O(|ẑ||z|) and the total alignment loss will be the last entry
computed since it is backed up with dynamic programming
by the cost of the path that was taken to compute it. Because
Lhard and Lsoft will inevitably conflict in how they enforce
alignment, they are scheduled such that the hard alignment
loss is annealed throughout training while the soft align-
ment loss is increased throughout training. This weighting
αi is computed per epoch i as

αi = e−i/
√
T (7)

where T is the total number of epochs to train for.
Adversarial loss. Both discriminators are trained with

least squares loss [13]. The generator (G) loss is

Ladv,G = (Dy(ŷ)− 1)
2
+ (Dz(ẑ)− 1)

2 (8)

where ŷ is the generated output and ẑ is its corresponding
mel spectrogram. The audio discriminator (Dy) loss is

Ladv,Dy
= Dy(ŷ)

2 + (Dy(y)− 1)
2 (9)

and the spectrogram discriminator (Dz) loss is

Ladv,Dz
= Dz(ẑ)

2 + (Dz(z)− 1)
2 (10)

where y is the ground truth audio and z is its corresponding
mel spectrogram.

4 Experiments
In all experiments, we train the end-to-end model from
scratch. Our system integrates both a speech synthesis
network and an adversarial loss component, which allows
speech features to be learned in a fully unsupervised man-
ner. We utilize the Mean Opinion Score (MOS) evaluation
metric by running all audio samples for all baselines on Me-
chanical Turk, as is standard for all work in the TTS liter-
ature. Each Mechanical Turker listens to all audio samples
from all baselines to ensure rating consistency. The MOS
scores are then aggregated with 95% confidence intervals,
where 5 indicates natural realistic speech and 1 indicating
poor quality speech. We evaluate against the Glow-TTS
[10] with HiFiGAN [11] vocoder pipeline, since this is the
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best two-stage approach that is open-source and available.
None of [4, 16, 24] are open-source at the time of writing
this paper.

We find that this base approach approach achieves com-
petitive MOS scores, demonstrating that the combination
of adversarial training with external supervision and pre-
trained components is a viable solution to both stability and
naturalness of the synthesized speech.

4.1 Dataset

We trained our model on the LJSpeech dataset, which con-
sists of approximately 24 hours of speech from a single
speaker. The dataset contains 13,100 short audio clips
paired with their corresponding text transcriptions, provid-
ing rich phonemic coverage necessary for training a high-
quality end-to-end text-to-speech system. The dataset is
monospeaker, ensuring that speaker-specific characteristics
are controlled during training.

4.2 Training Stability

Training the end-to-end model from scratch on the
LJSpeech dataset proved to be a challenging and finicky
process. We observed that, without adequate supervision,
the model exhibited unstable behavior during training. One
of the key challenges was the optimization of the speech
synthesis pipeline, which required a delicate balance be-
tween the generative adversarial loss and the reconstruction
loss. Early training iterations often led to instability and
poor convergence, with generated speech suffering from
unnatural intonation and distorted phonetic structure. The
Lhard versus Lsoft scheduling was very brittle on a dataset
this scale – in general, alignment would probbaly be easier
to learn and require less supervision at a larger dataset scale.

4.3 Duration Supervision

To experiment with stability, we also run ablations where
the duration predictor is supervised with durations com-
puted with Montreal Forced Alignment (MFA) [14]. Be-
cause the duration predictor is directly responsible for how
the phonemic embeddings are broadcasted and averaged,
we observe that providing explicit signal for this module
greatly reduces the local minima during optimization, sim-
ilar to [17]. These labels guide the duration of phonemes
during training and make the alignment problem much eas-
ier to learn. Incorporating this additional supervision signif-
icantly improved the training stability and accelerated con-
vergence. Because MFA is a non-parametric method of get-
ting pseudo-ground truth, it could be used similarly as spec-
trogram computation to supervise portions of text-to-speech
systems. We leave explorations of incorporating this as a
auxiliary scheduled loss up to future work.

4.4 Pretrained Phonemizer

We further enhance the performance and stability of the
model by replacing the phoneme encoder with a pretrained
model that maps text directly to phonemic embeddings.
Specifically, we experiment with the ByT5 model, a re-
cent token-free model based on byte-level text processing
[25], and simply add a single Transformer layer after com-
puting its embeddings on the phonemic input. We do not
update the Byt5 layers in training our model to prevent
catastrophic forgetting from overfitting. Because Byt5 is
a large pretrained model trained on large amounts of text,
it is able to capture much more complex representations of
phonemes than one trained from scratch on LJSpeech. Us-
ing pretrained representations also improves the stability of
the training process. We find that, in line with transfer learn-
ing in other domains, that a pretrained base model provides
a help initialization for the rest of the model for training.
We note that there are other similar grapheme-to-phoneme
pretrained models such as T5G2P [29] and leave this up to
future work to investigate the benefits of large pretrained
natural language foundation models on end-to-end text-to-
speech systems.

Method MOS Score
Human baseline 4.43± 0.07

Glow-TTS [10] + HiFiGAN [11] 4.11± 0.08

Ours (from scratch) 3.95± 0.06

Ours + MFA loss 4.01± 0.06

Ours + MFA loss + Byt5 4.08± 0.07

Table 1: Mean Opinion Scores (MOS) with 95% confidence
intervals for all baselines, experiments, and ablations.

5 Discussion
This work presents an end-to-end speech synthesis model
that combines adversarial training, external supervision,
and pretrained phoneme encoders to address challenges in
generating natural and stable speech. We design the sys-
tem after the best practices in TTS literature and train the
model from scratch on the LJSpeech dataset. We also in-
vestigate auxiliary forms of supervision and pretraining and
find that bootstrapping the system with these compute- and
data-free methods improves training stability and conver-
gence. Our results show that adversarial training continues
to be a viable method in end-to-end learning. Future re-
search could explore scalability to multi-speaker systems,
integration of other foundation models, and hybridization
with self-supervised learning techniques.
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