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Abstract
Deep neural networks have been shown to at-
tain high performance on average but poor per-
formance on certain subsets of data, oftentimes
because they learn incorrect correlations between
the target task and spurious features. Group ro-
bustness addresses this by training models to
maximize worst-case performance over a set of
groups. Prior work in group robustness has
only focused on a single spurious correlation per
dataset, but this univariate setting is insufficient
in cases where models should be robust to many
spurious correlations, which can be unknown a
priori. To this end, we introduce multivariate
group robustness, which presumes the existence
of many pairs of spurious correlations simulta-
neously. We rigorously define and measure the
spuriousness (strength) of such correlations and
verify our procedure by creating a multivariate
CelebA dataset for group robustness. We show
that this multivariate setup lends itself naturally
to multi-task learning; our multi-task baselines
show 5-14 percentage point improvements in uni-
variate worst-case accuracy without extra tuning
or compute. Finally, we are able to qualify the
combinations of spurious correlations that lead to
gains in our new multivariate setting, which is an
important property for interpretable applications.

1. Introduction
Standard machine learning models are trained with empiri-
cal risk minimization (ERM), which minimizes the average
training loss to produce models that generalize well to un-
seen test sets (Hashimoto et al., 2018; Hovy & Søgaard,
2015; Byrd & Lipton, 2019). Despite being highly accurate
on average, state-of-the-art models can still incur high error
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on certain groups of rare and atypical examples. Failures on
these groups usually occur when models learn and rely on
spurious correlations, random associations that hold in the
training distribution but not over the true data distribution.
For example, in melanoma classification, suspicious lesions
are strongly correlated with surgical skin markers (Winkler
et al., 2019). A model that learns this spurious correlation
would achieve near-perfect average performance, but would
fail on groups where this correlation does not hold (i.e. the
set of melanoma images without surgical skin markers).
Spurious correlations have been found to exist in a variety
of domains such as privacy (Leino & Fredrikson, 2020),
fairness (Izzo et al., 2020), face recognition (Buolamwini
& Gebru, 2018), natural language inference (Gururangan
et al., 2018), and image classification (Sagawa et al., 2020a).
As neural networks become progressively omnipresent in
high-stakes environments such as autonomous vehicles and
cancer diagnosis, their robustness to spurious correlations
has become a high priority of research.

Though group robustness as a means of addressing spurious
correlations is a well-studied field in recent years (Sagawa
et al., 2020a; Liu et al., 2021; Goel et al., 2021; Byrd &
Lipton, 2019), it has only trained and evaluated models on
their robustness to a single spurious correlation per domain.
We refer to a spurious correlation between a target task and
a spurious attribute in this existing setup as univariate. Past
work addresses univariate spurious correlations by training
models to have low worst-group loss without compromising
average loss over a set of non-overlapping groups, usually
defined as a Cartesian product between the target task and
spurious attribute (Sagawa et al., 2020a). Univariate group
robustness methods can be categorized as using group infor-
mation either in training (Sagawa et al., 2020a; Goel et al.,
2021; Zhang et al., 2021), or only in validation for hyperpa-
rameter tuning and checkpoint selection (Liu et al., 2021;
Sohoni et al., 2020).

However, we argue that the existing framework of univari-
ate group robustness is incomplete as it is constrained to
optimize tasks in isolation, when in reality the multivari-
ous interactions of spurious correlation can be leveraged to
mitigate the overall influence of individual spurious correla-
tions. For example, in the domain of medical diagnoses from
chest x-rays, Oakden-Rayner et al. (2020) found that models
trained to diagnose pneumothorax incorrectly rely on the
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(a) Univariate setting (b) Multivariate setting

Figure 1. Univariate versus multivariate settings. The right axis is an unordered set of potential diagnoses from chest x-rays and the left
axis is an unordered set of attributes describing each x-ray. The spurious interactions between attributes and labels can be viewed as a
bipartite graph. Current works only address univariate interactions (single-edge subgraphs in Figure 1a), but we propose a setting in which
we address multivariate interactions (multi-edge subgraph in Figure 1b) simultaneously over the same distribution D.

presence of chest drains (a device used for the treatment of
the condition), while Zech et al. (2019) found that models
trained to identify pneumonia rely on hospital-specific fea-
tures present in the x-rays. In such complex applications, it
quickly becomes self-evident that spurious correlations exist
in varying degrees of severity and often between attributes
that we do not know a priori (hence, spurious). We refer
to the concurrence of spurious correlations in the setting
above as multivariate, existing between many pairs of target
tasks and spurious attributes. Since this requires multivariate
versions of current datasets, we create a new method for con-
structing multivariate group robustness datasets and apply it
to CelebA (Liu et al., 2015), which has been well-studied in
the univariate setting.

To this end, we propose multivariate group robustness,
where we seek to mitigate the effect of multiple spurious
correlations concurrently as opposed to treating and optimiz-
ing for them independently as is done in the univariate case.
For example, as shown in Figure 1, instead of diagnosing
pneumothorax and pneumonia separately, we assume some
underlying relationship in the feature space and optimize
them together in a multi-task approach. Intuitively, shar-
ing representation across tasks will regularize the model
from depending on task-related spurious correlations – as
the sets of spurious features between tasks is likely to be
unique – allowing the model to attain better worst-group
performance across all tasks. To support multiple spuri-
ous correlations, we formulate the optimization problem
as multi-task learning (MTL) over some target tasks and
their spurious attributes. We show that multivariate mod-
els are more group-robust than their univariate counterparts
while also making minimal assumptions about the nature
of the spurious correlation, which is consistent with other
observations of MTL (Caruana, 1997; Ruder, 2017).

In this paper, we describe how to frame the multivariate
problem, create a multivariate dataset, and produce new
baselines in this new setting. Our contributions are as fol-
lows:

• We rigorously define the spuriousness of a correlation,

propose a δ metric as a measure of spuriousness, and
outline the process of obtaining δ values for each pair
of attributes.

• We apply δ to the CelebA dataset and identify 79 pairs
of spurious correlations, including the canonical one
of hair color and gender as identified in Sagawa et al.
(2020a). We verify our method by testing over different
pretrained initializations and optimization methods.

• We adapt group robustness baselines from Liu et al.
(2021); Idrissi et al. (2022) to optimize multivariate
spurious correlations and show improvements in worst-
group test set accuracy by 5-14 percentage points.

2. Related Work
In this paper, we focus on group robustness (i.e. learning
models that perform equally well across a set of predefined
groups in the data) as opposed to other avenues of robustness
research such as domain generalization (Muandet et al.,
2013; Sun et al., 2020; Zhou et al., 2020). Below, we discuss
the different flavors of group robustness research as well as
some background on multi-task learning.

2.1. Robustness with group information

Several approaches leverage group labels during training,
either to combat spurious correlations or handle shifts in
group proportions between train and test distributions. For
example, Mohri et al. (2019); Sagawa et al. (2020a); Zhang
et al. (2021) minimize the worst-group loss during training,
Goel et al. (2021) synthetically expand the minority groups
via generative modeling, Shimodaira (2000); Byrd & Lipton
(2019); Sagawa et al. (2020b); Idrissi et al. (2022) reweight
or subsample to artificially balance the majority and mi-
nority groups, and Cao et al. (2019; 2021) impose heavy
Lipschitz regularization around minority points. These ap-
proaches substantially reduce worst-group error but require
group annotations for the entire training set, which can be
prohibitively expensive.
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2.2. Robustness without group information

We prefer the setting where group annotations are unavail-
able for the training data and only available on a much
smaller validation set. Many approaches for this setting
fall under the general distributionally robust optimization
(DRO) framework where models are trained to minimize
the worst-case loss across all distributions in a ball around
the empirical distribution (Duchi et al., 2016; Namkoong
& Duchi, 2017; Oren et al., 2019). Pezeshki et al. (2021)
modify the dynamics of stochastic gradient descent to avoid
learning spurious correlations, Sohoni et al. (2020) automat-
ically identify groups based by clustering the data points,
Kim et al. (2019) propose an auditing scheme that searches
for high-loss groups defined by a function within a pre-
specified complexity class and postprocess the model to
minimize discrepancies identified by the auditor, and Khani
et al. (2019) minimize the variance in the loss across all data
points to encourage lower discrepancy in the losses across
all possible groups. Another approach is to directly learn
how to reweight the training examples either using small
amounts of metadata (Shu et al., 2019) or automatically
via meta-learning (Ren et al., 2018). Alternatively, prior to
training, examples can be either reweighted by class label
(Idrissi et al., 2022) or upweighted by misclassified exam-
ples from a trained classifier (Liu et al., 2021; Nam et al.,
2020). Similarly, Levy et al. (2020) reweight examples, but
dynamically in training based on highest loss.

2.3. Multi-task learning

MTL is a simple framework that has shown consistent bene-
fits across domains, tasks, and time (Caruana, 1997; Ruder,
2017). It can improve performance for a main task by incor-
porating other auxiliary tasks into the loss function (Devlin
et al., 2018) or for all tasks (Zhao et al., 2019). We name just
a few adaptations of MTL: Myronenko (2018) shows the
benefit of an auxiliary reconstruction task on the main seg-
mentation task, Donahue et al. (2021) show how auxiliary
multi-resolution spectral prediction tasks improve fidelity of
synthetic speech, and Raffel et al. (2022) show how pretrain-
ing on multiple text-to-text tasks achieves leading results
on downstream benchmarks. Despite immediate gains from
the multi-task setting, the specific combinations of tasks
can significantly affect performance, making it nontrivial
to determine which tasks should be trained together (Fifty
et al., 2021; Kumar & Daume III, 2012). Furthermore, MTL
can be sensitive to how tasks are weighted: Kendall et al.
(2018) show that task weighting by loss as a measure of un-
certainty balances training dynamics well; Liu et al. (2019)
introduce loss-balanced task weighting, where the per-task
weight is set every batch as the task’s loss normalized by its
loss at the start of the epoch. Task weighting is still an open
research problem and many solutions are engineered ad-hoc
to address the practical application at hand.

3. Problem Setup
3.1. Spurious correlations

Though spurious correlations have been well-studied in liter-
ature, they still have yet to be formally defined. Sagawa et al.
(2020b) define them as “misleading heuristics that work for
most training examples but do not always hold” and Idrissi
et al. (2022) as “patterns that discriminate classes only be-
tween specific groups.” Hence, we propose the following
definition.

Definition 3.1. Two attributes y and a are spuriously cor-
related with respect to some model fθ if there exist two
distributions pD̂(y, a) and pD(y, a) such that

• pD̂(y) = pD̂(a) and pD(y) = pD(a) are both uniform.

• fθ attains a much higher loss on D than it does on D̂.

This definition captures the two main properties of spurious
correlations: correlation and severity. Intuitively, if y and a
are spuriously correlated, then pD̂ and pD differ only in their
correlation structure for y and a (the marginals are fixed),
but the model relies on this and incurs high (severe) losses
on D. We refer to the strength of change in correlation
structure of some (y, a) pair as its spuriousness.

3.2. Univariate group robustness

We now introduce the univariate problem setup. We seek
to classify an input x ∈ X as a binary label y ∈ Y .1 We
are given a dataset of N points {(x(i), y(i), g(i))}Ni=1 ∼ D
sampled from a true distribution. The goal is to learn a
classifier, fθ : X 7→ Y , that incurs low worst-group error
over a set of non-overlapping groups G, defined as

min
θ

max
g′∈G

Ex,y,g∼D[ℓ0−1(x, y; θ) | g′ = g] (1)

where each example (x, y) belongs to its group g ∈ G and
ℓ0−1(x, y; θ) = 1[fθ(x) ̸= y] is the 0-1 loss as in Liu et al.
(2021). In our work, each group g = (y, a) is defined by
the label y and a spuriously correlated attribute a ∈ A as
exemplified in Figure 2.

3.3. Multivariate setting

In the multivariate setting, our dataset now has multiple
labels y = (y1, ..., yT ) such that y ∈ YT . For each multi-
label, we consider some set of attributes, a = (a1, ..., aT ),
such that each aj is spuriously correlated to label yj . We
then define a group gj = (yj , aj) as in the univariate setting,
such that each multi-label has their associated set of prede-
fined groups g = (g1, ..., gT ) where g ∈ GT and gj ∈ Gj .

1We work with binary labels, since multiclass labels can be
decomposed into a set of binary labels.
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Note that y, a, and g are unordered, but we introduce index-
ing for convenience. We refer to each distinct unordered g
as a grouping.

We essentially create multivariateness by stacking the uni-
variate labels (and their corresponding groups) into a higher
dimension. Concretely, in the instance of the well-studied
CelebA dataset (Liu et al., 2015), instead of training a model
to just predict Blond Hair to be robust to the Male
attribute (Sagawa et al., 2020a; Liu et al., 2021; Idrissi
et al., 2022), the model is trained to also jointly predict Big
Lips to be robust to the Chubby attribute. We provide
more multivariate examples in Figure 4.

Intuitively, multivariateness prevents the model from over-
fitting to a specific set of spurious correlations. In the exam-
ple above, learning the spurious Male attribute to predict
Blond Hair will lead to poor performance on predicting
Big Lips, and vice versa (learning the spurious Chubby
attribute to predict Big Lips will lead to poor perfor-
mance on predicting Blond Hair), so a model trained
to predict both target labels can rely neither on Male nor
Chubby attributes to minimize loss. In reality, relationships
between tasks and spurious attributes are probably complex
and latent, so the multivariate setting allows us to examine
the effect of these interactions.

By this construction, we now have a multivariate dataset of
N points {(x(i),y(i),g(i))}Ni=1 ∼ D sampled from a true
data distribution. Our goal is to learn a multi-task classifier
fθ,ϕ : X 7→ YT parameterized by shared θ and task-specific
ϕj , which achieves low mean worst-group error across all
groups simultaneously. We express the optimization as

min
θ,ϕ

T∑
j=1

max
g′∈Gj

Ex,y,g∼D[ℓ0−1,j(x,y; θ, ϕj) | g′ = gj ]

(2)
where each point (x,yj) belongs to its group gj ∈ Gj and
ℓ0−1,j(x,y; θ, ϕ) = 1[fθ,ϕ(x)j ̸= yj ].

3.4. Multi-task learning

To accommodate multiple spurious correlations, we frame
the multivariate setting as multi-task learning (MTL) over
the target labels. Intuitively, by learning a joint representa-
tion that is predictive across multiple tasks, the model will
be less susceptible to spurious features for each task and
learn robust features that are useful for other tasks. As such,
MTL acts as a feature regularizer that makes the model
robust to spurious attributes without necessarily knowing
these attributes a priori. Previous works have shown that
features learned by MTL are more robust and indicative of
the tasks at hand, which has lead to improvements in domain
generalization (Qi et al., 2022; Ruder, 2017; Ghifary et al.,
2015).

Figure 2. Grid of groups created from the Cartesian product of two
binary attributes. In the univariate setting on the CelebA dataset,
Blond Hair is the task label, which is spuriously correlated
with the Male attribute.

At its core, a multi-task network minimizes the expected
loss across all tasks by using a shared feature backbone
which feeds into individual per-task linear heads. Thus, the
training objective function becomes:

LMTL = Ex,y∼D̂

 T∑
j=1

wjℓ(x,yj ; θ, ϕj)

 (3)

where fθ is a shared backbone network, ϕj is a linear pro-
jection head for task j, ℓ is the loss function, and wj > 0 is
the positive weight associated with task j. Since T and wj

are hyperparameters that are still open research questions,
we explore optimal settings for both in our experiments.

4. Identifying Spurious Correlations
We now describe how to identify new spurious correlations
in a multi-label dataset. Consider two distinct attributes,
y and a. We assume these to be binary labels (as is the
case in CelebA, where the multi-class label for “hair color”
is factored into binary labels for Blond Hair, Brown
Hair, Black Hair, Gray Hair, etc.) such that their
Cartesian product creates 4 groups as shown in Figure 2:
g0,0 = (y = 0, a = 0), g0,1 = (y = 0, a = 1), g1,0 = (y =
1, a = 0), and g1,1 = (y = 1, a = 1). Then, each sample
(x, y) belongs to a group g ∈ y× a and we can measure the
expected validation accuracy of the classifier over group g′

as

γ(g′; θ) = Ex,y,g∼D[1− ℓ0−1(x, y; θ) | g′ = g] (4)

4.1. δ metric

In order to identify spurious correlations, we first need to
quantify them. We propose the following definition of δ to
measure the spuriousness between attributes (y, a).
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Definition 4.1. To measure the spuriousness between at-
tributes y and a, we define the δ metric as

δy,a = |γ(g0,0) + γ(g1,1)− γ(g0,1)− γ(g1,0)| (5)

We claim that δ is an adequate metric for spuriousness by
showing that it captures the maximum (worst-case) change
in correlation structure induced by moving from D̂ to D.
We can describe the correlation between y and a as the
optimal transport of loss with marginal constraints. By
Definition 3.1, we know that high loss on D with respect to
D̂ indicates a change in correlation structure between y and
a as we move from pD̂ to pD. Therefore, we must show that
δ measures spuriousness as the change in optimal transport
of loss between the two distributions.

Theorem 4.2. For binary attributes (y, a) on train and
test distributions pD̂ and pD, respectively, the maximum
change in optimal transport of loss, δ, can be quantified as
the difference in group performance between the on- and
cross-diagonals.o

Proof. On distribution D, the optimal transport problem
subject to marginal constraints pD(y) = pD(a) with cost
matrix C can be expressed as

T∗
D = min

TD

⟨TD,C⟩ s.t.

{
TD1 = pD(y)

T⊤
D1 = pD(a)

(6)

To maximize the transport of loss from D̂ to D, we can solve
for loss-maximizing T∗

D and loss-minimizing T∗
D̂.

Monge-Kantorovich duality states that any permutation ma-
trix is an optimal transport matrix (Peyré et al., 2019). Since
we are working with binary variables, there are only two
distinct permutation matrices. If T∗

D ̸= T∗
D̂, then the dif-

ference in optimal transport is the absolute difference of
diagonals of the minimizer and maximizer, which is exactly
the δ characterization. Otherwise, if T∗

D = T∗
D̂, then the

minimizer and the maximizer are the same and there is no
difference in optimal transport, which is trivially δ = 0.

The δ value follows by applying T∗
D − T∗

D̂ to C and tak-
ing the absolute value. Because the negative linear corre-
lation between loss and accuracy is irrelevant in absolute
values, we replace Ci,j with γ(gi,j) to get the δ metric as
the absolute difference of on- and cross-diagonal test-set
accuracies.

We note that δ is a heuristic that attempts to uncover spu-
rious correlations as artifacts of what models learn from
training data, agnostic to our human perceptions of spuri-
ous correlations. For example, δ identifies (Blond Hair,
Male) as a spurious correlation, which we would agree
with since they are not correlated in reality. However, δ

also identifies (Blond Hair, Gray Hair) as a spurious
correlation, which we would not agree with since they are
mutually exclusive in reality. As a result, we see that δ is
not perfect – it is unable to identify causality since can only
approximate correlation with neural networks. To correct
for these situations, we manually validate that all extracted
spurious correlations are between non-causal attributes.

4.2. Correcting for small group sizes

We often observe that small group sizes produce spurious
correlations. To account for variance from small sample
sizes on the validation set (with the smallest groups contain-
ing as little as 1% of all examples), we train multiple models
with different random seeds and construct 95% confidence
intervals of validation accuracies using the Agresti-Coull
method (Agresti & Coull, 1998). We outline how to con-
struct these confidence intervals in Appendix A.

Let the validation accuracy of the classifier on group gi,j
be ρi,j . To correct for small group sizes, we construct
a confidence interval, [γ(gi,j)−, γ(gi,j)+], and obtain the
variance-adjusted estimate clamped to the interval as

γ̄(gi,j) = max(min(ρi,j , γ(gi,j)
+), γ(gi,j)

−) (7)

We then compute δy,a by replacing γ(gi,j) with γ̄(gi,j),
which will mitigate the effect of high-variance accuracy
computations. From now on, δy,a refers to this adjustment.

4.3. Multivariate CelebA

To better understand how underlying characteristics of spu-
rious correlations may help in the multivariate setting, we
use CelebA (Liu et al., 2015), a well-studied multi-label
dataset for multivariate group robustness. CelebA con-
tains images of the faces of celebrities along with 40 la-
beled binary attributes ranging from hair color to face shape.
Since image classification models have been shown to learn
spurious associations of demographic information (Buo-
lamwini & Gebru, 2018), CelebA’s large number of labeled
attributes allows us to examine multivariate spurious phe-
nomena in depth. Additionally, the spurious correlation
(Blond Hair, Male) has been studied extensively in the
univariate setting (Sagawa et al., 2020a; Liu et al., 2021;
Idrissi et al., 2022; Sohoni et al., 2020).

To compute δ for each pair of attributes, we fine-tune an
ImageNet-pretrained classifier with ERM to classify each
individual target attribute, then evaluate each model on the
groups created with respect to each of the other 39 attributes
(40×39 = 1560 values total). Each model is the ResNet-50
architecture (He et al., 2015) used in Sagawa et al. (2020a);
Liu et al. (2021), trained with Adam optimizer for 25 epochs
with a learning rate of 1e-4 and weight decay of 1e-1.
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Figure 3. Distribution of δ values with ERM for all 1560 attribute
pairs in CelebA. We set ϵ = 0.33 to where we notice a dropoff,
but this threshold can be adjusted based on subjective tolerance or
application-specific sensitivity to spurious correlations.

Figure 3 shows the distribution of δ values on CelebA. The
vast majority of attribute pairs exhibit small δ values, but at
around δ = 0.33 we witness the long tail of larger δ pairs.
We take this gap to separate spurious from non-spurious cor-
relations, and set ϵ = 0.33 such that all pairs where δ > ϵ
are spurious correlations. This produces 79 spurious corre-
lations, or around 5% of all possible pairs. Furthermore, we
find that δBlond Hair, Male ≈ 0.3776 and confirm past work
built on Sagawa et al. (2020a).

We further verify our δ metric by using general pretrained
initializations such as CLIP (Radford et al., 2021) and class-
balanced optimizations such as SUBY (Idrissi et al., 2022).
We show that the spurious correlations identified with δ exist
irrespective of the model and its optimization by replicating
the above process for a CLIP-pretrained modified ResNet-50
fine-tuned with ERM and an ImageNet-pretrained ResNet-
50 fine-tuned with SUBY. Both ablations yield little vari-
ation in the distribution of δ values (see Appendix B for
details), suggesting that δ measures expected spurious cor-
relations captured by neural networks and is consistent with
Section 3.1. We release our new multivariate CelebA dataset
with spurious correlation pairs identified from all ablations
(ERM, SUBY, and CLIP).

5. Multivariate Group Robustness
The new multivariate CelebA dataset allows us to explore a
new set of methods, such as MTL. We want to understand
the impact of multivariatness as we move from single-task
to multi-task methods. To this end, we extend the univari-
ate baselines from Liu et al. (2021); Idrissi et al. (2022),
which belong to the same family of re-weighted sampling
in training set without using group labels.

5.1. Multi-task Just Train Twice

In Just Train Twice (JTT), Liu et al. (2021) train an initial
classifier fid to generate an error set of misclassified training
examples, E . Each example in this error set is upsampled by
a factor of λ in training the final classifier fθ. Intuitively, this

upweights examples from groups on which ERM models
perform poorly, which serves as a heuristic for identifying
examples that contain spurious features.

This, however, is not immediately applicable in the multi-
variate setting where fid performs T classifications of each
input and produces an error set Ej for each task yj . As a
result, each example is ascribed multiple weights, which
need to be mapped to a single weight that is representative
proportionally across all tasks. To address the question of
how misclassified examples and spurious correlations are re-
lated across tasks, we propose the inverse weighting scheme

λi =

{
λ∑

j 1[x(i)∈Ej]
x(i) ∈

⋃
j Ej

1 else
(8)

such that each example x(i) is upweighted inversely to of
the number times it is misclassified. For examples that are
never misclassified, we follow Liu et al. (2021) and assign a
default weight of λi = 1.

Intuitively, we hypothesize that a frequently misclassified
example may be more difficult rather than spurious, so we
decrease its importance in training. By employing this
weighting scheme in our multi-task version of JTT, we verify
whether MTL will still improve worst-group performance
despite potentially spurious examples being less important.
This would imply that shared representation learning pro-
vides benefit where re-weighting based on indicators of
spuriousness cannot.

5.2. Multi-task Simple Data Rebalancing

Idrissi et al. (2022) find that balancing training data by
classes or groups improves group robustness, and propose
downweighting or subsampling majority subsets as simple
baselines. We extend class-based subsampling (SUBY)
and reweighting (RWY) to the multivariate setting. In the
univariate setting, both methods assign a weight to each
example based on the proportion of its class in the training
set to dictate the example’s relative importance in training.

For each (x(i), y(i)) from training set D̂, the assigned weight
is:

wi =
N∑N

k 1[y(k) = y(i)]
(9)

where N = |D̂|. In SUBY, pi = 1− 1/wi is the probability
of keeping an example such that the subsampled dataset is
class-balanced in expectation. In RWY, wi is the relative
weight used to sample an example such that each batch
class-balanced in expectation.

These methods are not directly applicable in MTL as each
example will be assigned T weights, one for each task. Data
rebalancing in the multivariate setting requires mapping
these T weights to a single w , which can then be used
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Figure 4. The groupings used in our multi-task baseline experi-
ments (T = 2; no common spurious attributes between each pair).

to reweight and subsample the training data in the same
manner as in the univariate setting, such that each class for
every task is equally represented in the training set. Since y
are multi-dimensional, the per-task weight will be different
based on the distribution of class values per task yj , so
there is no closed form mapping to a single w. Instead,
we approximate this as a constrained entropy minimization
problem:

w = min
w

∑
i

−wi log(wi) s.t.


Y⊤w = c

|w| = 1

minw ≥ 0

(10)

where Y is the matrix of all multi-labels in the training set
and c = 1/2 since we want equal representation of binary
classes. The entropy minimization formulation encourages
the probability distribution w to be flat and the constraint
Y⊤w = c ensures that that classes are balanced in expecta-
tion after reweighting or subsampling.

6. Experiments
With both multivariate dataset and methods in hand, we
explore how working in the multivariate setting can provide
gain over the univariate one. Significant gain would verify
that the shared representation of multi-task setups improves
robustness to spurious features, and would show how MTL
can be a straightforward mechanism to improve existing
group robustness without any additional tuning or compute.

In all experiments, we assume that group labels are only
available on a validation set for hyperparameter tuning and
checkpoint selection. We use the ResNet-50 architecture
(He et al., 2015), train over 3 seeds, and report 95% con-
fidence intervals as detailed in Appendix A. We only tune
hyperpameters for both univariate and multivariate ERM.
For RWY, SUBY, JTT we use the univariate hyperparame-
ters identified for CelebA in (Idrissi et al., 2022; Liu et al.,
2021) for both univariate and multivariate experiments. We
experiment with three forms of task weighting, but find
that equal weights across tasks works best. We report all
multivariate results with this configuration. Lastly, we only
use ERM for all ablative studies. See Appendix C for task
weighting details and Appendix D for all hyperparameters.

Table 1. 95% confidence intervals of worst-group accuracy across
tasks for the three groupings in Figure 4. Absolute gain is the im-
provement in accuracy from the univariate to multivariate setting.

METHOD WORST-GROUP
ACCURACY

ABSOLUTE
GAIN

MULTI UNI

ERM 46.77 ± 3.25 38.82 ± 2.89 +7.95
RWY 59.01 ± 1.45 53.0 ± 1.87 +6.01
SUBY 60.37 ± 1.45 55.97 ± 1.92 +4.40
JTT 61.09 ± 1.43 46.87 ± 0.58 +14.22

6.1. Multivariateness improves over univariateness

We want to understand the immediate gains of the multi-
variate setting from the univariate one. For simplicity, we
explore the least restrictive multivariate scenario of T = 2
total tasks. The base case allows us to chalk up all changes
in worst-group performance to multivariateness. The 79 spu-
rious correlations identified in Section 4.3 contain 22 unique
tasks. We randomly sample a total of three groupings, each
containing two spurious correlations (see Figure 4). This
results in six unique target labels (a quarter of the 22 unique
tasks with spurious correlations), which gives us certainty
that these results should hold on the larger population.

We provide results across our 4 baselines in Table 1 and
report the mean over all six spurious correlations in this
study. The multivariate baselines consistently outperform
the univariate ones and we see absolute gains of up to 14%
in worst-group accuracy without compromising average ac-
curacy (Table 2 in Appendix E). Our results indicate that
multivariate methods improve performance without any ad-
ditional tuning, and that a simple way of improving group
robustness is by adding more tasks to the training objective.

6.2. Multivariate setting ablations

Since task selection is an open research question in MTL,
we also want to examine what combinations of spurious
correlation pairs lead to the largest gains. We examine the
following scenarios: tasks that have disjoint spurious at-
tributes, tasks that are semantically similar, and tasks with
high degrees of spuriousness. For each setting, we randomly
sample five groupings that each contain two spurious cor-
relation pairs. We also ablate the number of joint tasks to
observe marginal returns of MTL as a function of T .

6.2.1. TASKS WITH DISJOINT SPURIOUS ATTRIBUTES

Tasks with disjoint spurious attributes have no spurious at-
tributes in common (i.e. attributes are either spuriously
correlated to Big Lips or Blond Hair, but not both).
We initially hypothesized that the joint representation in the
multivariate setting provides benefit due to the fact that the
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(a) (b) (c) (d)

Figure 5. Results of multivariate ablations. Figure 5a shows that the relation of spurious attributes across tasks does not significantly affect
performance. Figure 5b shows that learning semantically dissimilar tasks together is beneficial. Figure 5c shows that spuriousness is not
important to performance. Figure 5d shows additional tasks only benefit in setting of tasks with nondisjoint spurious attributes.

sets of spurious features between tasks are likely to be dis-
tinct. Hence, models trained on tasks with disjoint spurious
attributes should perform better since there is no common
spurious attribute that the model can rely on to predict both
tasks well. Figure 5 shows this to be insignificant, as the
disjointness of spurious correlations has minimal effect on
performance gain. This suggests that the simple addition of
another task is enough to improve group robustness.

6.2.2. SEMANTICALLY DISSIMILAR TASKS

We refer to semantically similar tasks as labels that refer
to similar attributes of the face (i.e. Blond Hair and
Bangs) and semantically dissimilar tasks as labels which
refer to different attributes of the face (i.e. Blond Hair
and Big Lips). Intuitively, semantically dissimilar tasks
will require learning more general features which discour-
ages the model from relying on common spurious attributes.
Figure 5 confirms this and illustrates that task semantics can
lead to an 8% difference in accuracy improvements.

6.2.3. TASKS WITH SEVERE SPURIOUSNESS

We define tasks with severe spuriousness as spurious cor-
relations whose δ values are above the median (and weak
spuriousness as below the median). Though we suspect that
tasks with severe spuriousness may be difficult to address
due to strong dependencies on their spuriously correlated
attributes, we find in Figure 5 that this does not lead to
markedly different worst-group accuracy gains. We also see
that, in comparison to the other scenarios, task spuriousness
is not as of an important criterion in multivariateness.

6.2.4. NUMBER OF TASKS

Since MTL scales with the number of target labels available,
it is insightful to see when MTL stops providing marginal
performance gain. Our goal is to understand the impact
of increasing the number of tasks, and so we construct
ablations on T by sequentially adding tasks to an initial set

of 2 tasks so that we can evaluate our models on the same
tasks for each experiment. See Appendix E for details.

We expect that as we add tasks, the interaction between spu-
rious attributes plays a bigger role in overall robustness, so
we ablate T under different relationships between spurious
attributes. Figure 5d highlights the change in worst-group
accuracy across our base T = 2 tasks as we increase T . On
average, there is no benefit from larger T , but tasks with
nondisjoint spurious attributes show positive marginal gain,
while tasks with disjoint spurious attributes show negative
marginal gain. This indicates that if we choose tasks at
random for a grouping without full understanding of the
interactions between their spurious correlations then the
number of tasks is not an important aspect of performance.

7. Conclusion
In this paper, we introduce multivariate group robustness, a
generalization of existing univariate work to address multi-
ple target labels with their own associated spurious attributes.
We propose the first formal definition and metric for spu-
rious correlations. We connect our method to definition
via rigorous theoretic foundation and identify 79 new spu-
rious correlations in our new multivariate CelebA dataset.
We demonstrate how to extend univariate baselines to the
multivariate setting and show that this universally leads to
significant gains in worst-group accuracy with no degrada-
tion of average accuracy. Our ablation experiments also give
insight into the combinations of tasks and spurious attributes
that lead to the largest gains in the multivarate setting.

In conclusion, we demonstrate the importance of multivari-
ate group robustness and how it unifies the approaches in
past works. Though some multivariate assumptions can be
limiting, such as access to many high-quality labels, we cite
the universality of multi-task learning to emphasize the need
for future work here. We release one multivariate dataset
and hope that others will expand our formalizations to create
additional benchmarks.
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A. Agresti-Coull confidence intervals
For each seed k, we train a model parameterized by θk. Let pk be the model’s accuracy over some set of examples that we
would like to evaluate (for accuracy on some group g, we have pk = γ(g; θk)) and n be the number of samples in this set.
Using Gaussian approximation, we compute the empirical mean µ̂k and variance σ̂2

k as

µ̂k = pk, σ̂2
k =

pk(1− pk)

n
(11)

Aggregating over the seeds, we get

σ̂2 =
1

Σk(1/σ̂2
k)

, µ̂ = σ̂2Σk

(
µ̂k/σ̂

2
k

)
(12)

The confidence interval can then be computed as µ̂± zσ̂ where z is the 1− α/2 percentile of the normal distribution. We
report all results over k = 3 seeds with α = 0.05, which corresponds to 95% confidence intervals.

B. Spurious correlation identification
Each SUBY model was trained for 25 epochs using Adam optimizer with a learning rate of 1e-4, weight decay of 1e-1, and
a batch size of 64. Each CLIP model was trained for 50 epochs using Adam optimizer with a learning rate of 1e-4, weight
decay of 1e-1, and a batch size of 128. The histogram of recovered δ values for both CLIP and SUBY are shown in Figure 6
and Figure 7 respectively.

Figure 6. CLIP identified δ values for all 40× 39 pairs in CelebA. The resulting distribution, and identified spurious correlation pairs
with large δ values, is similar to that identified by ERM.

C. Task weighting schemas
C.1. Equal weighting

The most naive form of task weighting in multi-task learning consists of setting each weight associated to one of the T tasks
to an equal value such that

∑T
i=1 wi = 1. Hence, we get that each wi =

1
T

C.2. Weighting based on delta

We additional consider weighting each spurious correlation pair in a grouping by its associated delta value. Hence, if for
each of the T tasks we have an associated δyi,ai then the weight associated to task i is defined to be: wi = Softmax(δ)i
where δ = (δy1,a1 , ..., δyT ,aT

)
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Figure 7. SUBY identified δ values for all 40× 39 pairs in CelebA. The resulting distribution, and identified spurious correlation pairs
with large δ values, is similar to that identified by ERM.

C.3. Loss balanced task weighting

After each batch in training, loss balanced task weighting (Liu et al., 2019) updates the weights for a each task based on the
loss ratio between the loss of the current batch and the loss of the initial batch. This ratio acts as a metric for how well the
model has trained for that given task. See Algorithm 1 for details.

Algorithm 1 Loss-Balanced Task Weighting
Given t tasks and hyperparameters α, η
Initialize the model θ, ϕ ∈ Θ
for each epoch i do

for each batch j do
Compute loss ℓ(j) := ℓ(j)(x, y; θ, ϕ) ∈ Rt.
if j = 0 then

Store the first batch loss as ℓ(0) := ℓ(j)(x, y; θ, ϕ).
end if
for each task k do

Set the task weight wk :=

(
ℓ
(B)
k

ℓ
(0)
k

)α

Update weighted loss ℓ(B) :=
∑

k wkℓ
(B)
k

end for
Update parameters θ, ϕ with respect to ℓ(B)

end for
end for

D. Experimental hyperparmeter values
When tuning ERM in both the univariate and multivariate settings we search over the following values:

• Weight Decay: [1e-4, 1e-3, 1e-2, 1e-1]

• Learning Rate: [1e-5, 1e-4, 1e-3]

• Batch Size: [32, 64, 128]
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We found that the best parameters for univariate ERM were a weight decay of 1e-4, a learning rate of 1e-4, a batch size of
128, and training for 50 epochs. The grid search resulted in multivarite ERM using a weight decay of 1e-2, a learning rate of
1e-4, a batch size of 32, and training for 50 epochs.

For all other methods we use the following parameter values:

• Multivariate and Univariate SUBY: Weight Decay=1e-2, Learning Rate=1e-3, Batch Size=128, Epochs=60

• Multivariate and Univariate RWY: Weight Decay=1e-2, Learning Rate=1e-4, Batch Size=2, Epochs=60

• Multivariate and Univariate JTT: Weight Decay=1e-1, Learning Rate=1e-5, Batch Size=128, Epochs=50, λ=1

E. Experimental results and ablations
E.1. Multivariate vs univariate results

Table 2 highlights that the multivariate setting does not compromise average accuracy performance compared to the
univariate setting – in some baselines, it even improves performance.

Table 2. 95% confidence intervals of average accuracy across tasks for the three groupings in Figure 4. Absolute gain represents the
increase in accuracy by moving from the univariate setting to the multivariate setting.

METHOD AVERAGE
ACCURACY

ABSOLUTE
GAIN

MULTI UNI

ERM 87.35± 0.10 87.79 ± 0.10 -0.44
RWY 85.08 ± 0.12 84.36 ± 0.11 +0.72
SUBY 83.98 ± 0.12 85.02± 0.11 -1.04
JTT 79.23± 0.13 70.32± 0.14 +8.89

E.2. Num tasks ablation

We explicitly outline the experimental setting of Section 6.2.4 below:

Letting Multi(n) refer to the multivariate setting where there are n spurious correlation pairs, we generate all groupings as

1. Sample two groupings for Multi(2) from the set of all groupings of size 2.

2. For each of the two Multi(2) groupings, sample three spurious correlations from our set of 79 spurious correlations to
form groupings for Multi(3).

3. For each of the six Multi(3) groupings, sample one more spurious correlations to form groupings for Multi(4).

4. For each task used in Multi(2), compare Multi(n) for n ∈ [2, 3, 4] against the univariate performances.

As trained models may perform at different accuracies on different tasks, we ensure that at each ablation we evaluate our
models on the same initial two tasks.


