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Abstract. Glioblastoma (GBM) is the most common and
lethal primary, malignant, grade IV brain tumor in adults.
Automated segmentation of GBM lesions from gadolinium-
enhanced magnetic resonance imaging (MRI) is necessary
to diagnose the presence of such tissue abnormality in
the cranium. Human segmentations are expensive, time-
inefficient, prone to error, and also require anatomical ex-
pertise. We seek to help automate this process by develop-
ing a semantic segmentation network for volumetric (3D)
subregion segmentation of MRI images for Stanford Can-
cer Institute’s larger subtype classification pipeline. The
existing baseline implementation for this use case achieves
a 60% dice coefficient score with a V-net [9] on the Stanford
Cancer Institutes test data and over-segments on non-tumor
parts of the brain such as the skull and orbits. In our ap-
proach, we adopt the commonly-used encoder-decoder con-
volutional architecture similar to the U-net [11]. Addition-
ally, we leverage a variational autoencoder (VAE) branch
to reconstruct the MRI input images, which imposes a reg-
ularizing constraint on the encoder [10]. The combination
of both achieves a 64% dice coefficient score outperforming
the baseline quantitatively and qualitatively.

1. Introduction

Magnetic resonance images (MRI) serve to display the
severity and location of tumor tissue which can determine
subsequent surgical approaches. However, MRIs can also
be used to sub-classify GBM tumor clusters for use in diag-
nosis. Researchers at the Stanford Cancer Institute iden-
tified 128 radiomic features [6] for classifying the rim-
enhancing sub-type, which makes up 1/3 of all GBM le-
sions, leaving a high-precision lesion segmentation as one
of the final pieces left to a complete lesion classification
pipeline.

The input to our volumetric convolutional model is a set
of modalities, or color contrasts, of skull-stripped MRI im-
ages of a single patient’s brain. There are four major MRI
modalities, or color contrasts, of a given MRI scan: t1, t2,

t1ce (t1-post), and flair. We only utilize the t1-post and flair
modalities since the Stanford Cancer Institute’s test data is
most complete for those. The output of the model is a vol-
ume of the same dimension of an input MRI image of a
single modality, but with a multiclass label mask for the
voxel values. The problem formulation is multiclass seman-
tic segmentation, where the model learns to label each voxel
with one of three classes corresponding to a given tumor
subregion or no class, indicating healthy brain tissue. The
three different tumor sub-regions are “enhancing tumor”,
“tumor core”, and “whole tumor”, which correspond to la-
bels 4, 1, and 2 [1]. We opt to train the model on separate
binary classifications instead of a single multiclass classifi-
cation to simplify the objective in training. As is common
in most semantic segmentation tasks, we seek to optimize
the dice score coefficient, which evaluates the quality of the
model’s learned predictions.

2. Related Work
2.1. V-net architecture

Recent work in computer vision in the medical imag-
ing space has demonstrated the effectiveness of encoder-
decoder convolutional architectures in detection, classifi-
cation, and segmentation tasks. The Stanford Cancer In-
stitute’s current segmentation model baseline is the V-net
[9], which encodes the input volume through a series of
5x5x5 convolutions with residual connections [3] each fol-
lowed by a strided convolution for downsampling. This re-
sults in a spatially low-dimensional representation of the
image which is then passed to the decoder, which is a se-
ries of 5x5x5 convolutions with residual connections [3]
and strided transpose-convolutions for upsampling. The in-
put to each level of the decoder is an elementwise addition
of the output from the previous decoder level and the cached
encoder activations. This feature forwarding [11] from the
encoder to the decoder is designed to supply fine-grained
detail in reconstruction, and is an effective method for pro-
ducing a higher quality network output. The shortcoming
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Figure 1: Convolutional encoder-decoder model architecture with VAE regularization

of the V-net is its use of larger convolutional filters instead
of more layers.

2.2. U-net architecture

The U-net architecture [2, 11] presents a similar encoder-
decoder model structure, but with a few important modifica-
tions. The U-net uses 3x3x3 convolutions with many more
convolutional layers than the V-net does. This is more ef-
fective than the V-net since each filter is tasked with learn-
ing more local spatial interactions - stacking these allows
for greater model expressivity. The efficacy of smaller con-
volutional filters can be supported by [12]. The U-net also
elects to replace the strided convolution for downsampling
in the encoder with a max-pooling layer. Empirically, these
two downsampling methods have been shown to yield sim-
ilar results. We opt to use max-pooling for downsampling
since it reduces the number of trainable parameters without
a significant tradeoff in performance, though [13] claims
that convolutions are readily sufficient to capture downsam-
pling features.

2.3. Adding a Variational Autoencoder

The model introduced in [10] is a U-net-like architecture
with an additional variational autoencoder [7] branch. This
model won the 2018 BraTS brain tumor segmentation chal-
lenge, attaining an average dice score of 82% across all 3
subtumor classifications [10, 1]. The addition of the VAE
branch to the standard encoder-decoder architecture serves
as an extra regularization constraint [10, 17] on the model,
ensuring that the encoder is learning valuable feature rep-
resentations in the latent space. Functionally, the encoder’s

downsampled output is fed to the VAE (as well as the de-
coder), which then uses this input to sample from a learned
latent distribution, from which it reconstructs the original
input image. During training, the reconstruction error is
backpropagated to the layers of the encoder, which helps
regularize it. Unfortunately, [10] does not provide com-
parative metrics to evaluate the impact of the VAE branch
on out-of-sample performance, so we choose to adopt this
scheme and can confirm its relative effectiveness on reduc-
ing overfit on the training set.

3. Methods

We construct our model based on the encoder-decoder
with VAE architecture proposed by [10]. The model is
trained on a weighted combination of multiple objectives
(contributed by the decoder and the VAE). This architecture,
unlike the U-net, has an asymmetrically deeper encoder to
extract image features and a shallower decoder to recon-
struct the segmentation mask. The model aims to produce
a well reconstructed image in addition to the segmentation
mask as a proxy objective to regularize the encoder of the
network, and thus adds an additional branch with a vari-
ational autoencoder (VAE). We will first go over the base
architecture from [10] then discuss changes we’ve made to
it that have theoretical advantages.

3.1. Original Architecture

In [10], the authors apply image-wise normalization per
channel to the input images. They run fully stochastic train-
ing with a batch size of 1 and optimize with Adam, schedul-



ing the learning per epoch:

α = α0 ·
(
1− e

Ne

)0.9

(1)

where α0 is the initial learning rate 1e-4, e is the current
epoch number, and Ne = 300 is the total number of epochs
to train for. The model is trained on a NVIDIA V100 32GB
GPU. We replicate all of these aspects of training and pre-
processing.

3.1.1 Encoder

The encoder uses an alternating series of ResNet [3]
blocks and strided convolutions for downsampling. Each
ResNet[3] block contains two convolutional layers followed
by the additive identity skip connection. Each convolutional
layer consists of [GroupNorm, Conv 3x3x3, ReLU] layers.
Group normalization [16] is used instead of batch normal-
ization due to batch size of 1 used to fit training in memory.
The model downsamples the activation by a factor of two,
three times in the encoder forward pass using strided convo-
lutions. Each time the model downsamples, it also doubles
the number of channels of the activation. The final encoder
activation size is 20x24x16x256.

3.1.2 Decoder

The decoder performs the opposite dimensional operations
as the encoder: spatial upsampling by a factor of 2 and halv-
ing the number of convolutional filters at each level. How-
ever, it dedicates half the number of ResNet blocks at each
level. At the final output layer, there is a final pointwise
convolution with a sigmoid activation to project the output
to 3 channels, one for each possible kind of label. A dice
loss is calculated for each channel, and the decoder loss is
obtained by summing over the individual dice losses.

3.1.3 Variational Autoencoder

The VAE aims to reconstruct the original image, which will
help ensure that the encoder is learning meaningful (and
generalizeabe) representations, which is why it serves as a
regularization branch. The VAE performs a strided convolu-
tion and a projection to a 256-dimensional space, the output
of which is split into one representation each for the mean
and variance from which an output is sampled. The VAE
then projects this activation back to the original space and
has the same convolutional structures passes as the decoder,
but without encoder skip connections.

3.2. Architecture Modifications

We introduce several theoretical improvements to the ar-
chitecture that we will discuss in this next section.

3.2.1 Halving Model Complexity

In our final model, we only use half of the number of convo-
lutional filters used in [10]. This decision was made mainly
due to additional memory constraints introduced by Tensor-
flow 2.0 (Tensorflow 1.x was used in [10]). We find that this
reduction in model complexity did not provide any detri-
ment to the model’s ability to achieve baseline performance,
however. We also believe that the difference in performance
due to complexity is marginal, as the model already overfits
to the training set with the downsized version.

3.2.2 Adding Squeeze-Excitation Layers

[5] introduces modifications to the original ResNet that
shows improvements across the board. These squeeze-
excitation layers are applied to the residual, which theoreti-
cally allows the model to learn the important portions of the
residual to propagate through the block. This is intuitively
similar to the highway networks introduced in [14], but are
more tractable due to significantly less parameters.

The residual is first “squeezed” with a global average
pooling. The squeezed residual is then projected onto a
lower dimension with a reduced ratio of r followed by a
ReLU, which “excites” the residual. This output is then
projected back up to the channel size followed by a sigmoid.
This is then used to scale the residual before its addition at
the end of the block.

3.2.3 Initializing with He Normal

We also initialize our weights with He normal (except for
those in sigmoid activation layers, which we initialize with
Glorot normal), as this has been shown to lead to more sta-
ble training in deeper residual networks [4].

3.2.4 Adding Learning Rate Warmup

Because of our tripled dataset size, we found that adhering
to the learning rate proposed in [10] led to divergence in
training. We thus adopt a per-epoch linear warmup starting
from 1e-6 to 1e-5 for the first 10 epochs. We warmup (and
anneal) per epoch due to the noisiness of fully stochastic
gradient descent

3.2.5 Downsampling with Max-Pooling

We also replace the strided convolutions with max-pooling
instead. [10] downsamples with convolutions without men-
tioning any sort of normalization, so we witnessed an explo-
sion in magnitude of the inputs through the deeper layers of
the network. Rather than introduce normalization and acti-
vation layers, we opt for max pooling to reduce the number
of parameters in the model. There is also no real consensus



on the difference in performance between the two down-
sampling methods in literature.

3.2.6 Reordering the Convolutional Layers

In [10], the convolutional layers were comprised of group
normalization, then ReLU activation, and then a convolu-
tion. However, it is more common to structure these lay-
ers as convolutions followed by group normalization, then
ReLU, as in[3]. This also allows us to keep the same cy-
cle of convolution, normalization, and activation throughout
the network, including single convolutional layers.

3.3. Hyperparameter Search

We primarily tuned the learning rate, which is crucial
to convergence in training. We also experiment with the
effects of increasing and decreasing the number of con-
volutional filters, as well as the number of ResNet (or
SENet, perhaps) blocks that we use, much of which showed
marginal changes in performance. We discuss our final hy-
perparameter decisions and rationale in greater detail in the
Results section.

3.4. Objective Function

We formulate our loss identically as [10], as a weighted
combination of three different loss terms:

L = Ldice + 0.1 · LL2 + 0.1 · LKL, (2)

where Ldice, LL2, and LKL correspond to dice loss, L2 re-
construction loss, and KL divergence loss, respectively. The
0.1 weighting on the VAE losses are derived empirically in
[10].

3.4.1 Dice Loss

Because we want to optimize the dice coefficient, training
the decoder on the corresponding objective function opti-
mizes the score directly. Dice loss is an IoU (intersection
over union) metric very similar to precision, as it tries to
constrain the predicted set (of tumor voxels) to be as simi-
lar as possible to the ground truth:

Ldice =
2 ∗
∑
p · p̂+ ε∑

p2 +
∑
p̂2 + ε

, (3)

where p is the ground truth indicator, p̂ is the predicted out-
put probability, and ε = 1 serves as some form of smoothing
in the computation. We add dice loss functions over each of
the three channels for each sub-region segmentation.

3.4.2 L2 Loss

L2 loss is the reconstruction loss contributed by the VAE
branch which attempts to make the reconstructed image R̂

as close to the original input image R as possible:

LL2 = ||R̂−R||22. (4)

3.4.3 KL Loss

KL divergence is a way of measuring the difference be-
tween two probability distributions. We enforce this loss
on the predicted mean and variance of the VAE to be as
close to a standard Gaussian distribution as possible. The
closed form loss function with respect to N (0, 1), the stan-
dard Gaussian, is as follows:

LKL =
1

N

∑
µ̂2 + σ̂2 − log σ̂2 − 1 (5)

where N is the total number of image voxels [10] and µ̂,
σ̂2 are the mean and variance, respectively, of the learned
distribution. Another important note is that in training, we
learn log σ2 directly as opposed to σ2, since the latter can
yield negative variance values.

3.5. Metrics

While the primary metric to optimize is dice coefficient,
we also track accuracy, precision, and recall in training, all
of which provide intuitive explanations to what the model
is learning. In this section, p̂ is the prediction at a certain
voxel and p is the corresponding voxel truth value.

3.5.1 Dice Coefficient

The dice coefficient is a common IoU metric used in se-
mantic segmentation tasks. In our case, we report the aver-
age over the 3 separate dice coefficients calculated for each
class label:

dice =
2
∑
p · p̂+ ε∑

p2 +
∑
p̂2 + ε

, (6)

where ε = 1 serves as some form of smoothing in the com-
putation.

3.5.2 Accuracy

Accuracy is poor metric in our class, due to the severe
class imbalance (the vast majority of voxels are tumor-free).
Nonetheless, we track accuracy as a sanity check and expect
the model to score highly on this metric. Accuracy is calcu-
lated as follows:

accuracy =

∑
I{p = p̂}
h · w · d

(7)

where h, w, d are the spatial height, width, and depth, re-
spectively.



(a) Data sample of ax-
ial (top), coronal (bottom-
left), and sagittal (bottom-
right) views of MRI scans
of flair modality.

(b) Data sample of ax-
ial (top), coronal (bottom-
left), and sagittal (bottom-
right) views of MRI scans
of t1-post modality.

3.5.3 Precision

Precision is a metric of evaluating the quality of the model’s
selections. It is computed as the rate of true positives with
respect to all the positives predicted by the model. This
is useful in this task for evaluating whether the model is
overestimating or oversegmenting parts of the brain that do
not contain tumors:

precision =

∑
I{p · p̂}∑
p̂+ ε

. (8)

3.5.4 Recall

Recall is a metric of evaluating the coverage of the model’s
selection. It is computed as the rate of true positives with
respect to all the positives there are (in the true label). This
is useful in this task for evaluating if the model is detecting
all the tumords that it should be. A low recall score indicates
that the model doing a poor job at predicting tumors when
they are present:

recall =

∑
I{p · p̂}∑
p+ ε

, (9)

4. Dataset
We use the dataset from the 2017 BraTS Challenge [1]

which contains 285 labeled instances of 3-D MRI scans in 4
different modalities each 1. Our training split is 260 exam-
ples and our validation split is 25 examples. Each instance

1Bakas S, Akbari H, Sotiras A, Bilello M, Rozycki M, Kirby
J, Freymann J, Farahani K, Davatzikos C. ”Segmentation Labels
and Radiomic Features for the Pre-operative Scans of the TCGA-
GBM collection”, The Cancer Imaging Archive, 2017. DOI:
10.7937/K9/TCIA.2017.KLXWJJ1Q

Table 1: Validation metrics over 40 epochs

Epoch Loss Dice Score Precision Recall Accuracy
0 2.438 0.049 0.576 0.905 0.057
10 1.459 0.401 0.634 0.990 0.502
20 1.217 0.560 0.668 0.993 0.639
30 1.195 0.587 0.666 0.993 0.660
40 1.124 0.620 0.666 0.994 0.691

Figure 3: Training vs. validation dice score coefficient over
45 epochs

contains a primary tumor lesion with additional necrotic
(fluid-filled) sub-regions. Each spatial slice is a 2-D cross
section of the brain from the top view with progressively
deeper cross-sections along the depth dimension. All in-
stances contain non-cancerous brain matter that the final
model should learn not to classify as a tumor lesion. Un-
labeled test set images are held by Stanford Medicine and
will be human-evaluated by radiologists.

4.1. Preprocessing

We first perform a image-wise per-channel normaliza-
tion excluding 0 valued pixels in computation of the mean
and variance statistics. Though the paper performas a ran-
domized intensity shift and scaling of image pixels across
the training data, we believe that this introduces unneces-
sary complexity and noise to the task.

4.2. Augmentation

After data preprocessing, we randomly flip training
instances with probability 0.75 across all spatiall axes.
Next, we take three randomly placed spatial crops of size
144x144x128 on all data instances.



Figure 4: Training vs. validation loss over 45 epochs

Figure 5: Area under precision recall curve, first 10 epochs.

5. Results

5.1. Hyperparameters

We made a number of hyperparameter choices in data
preprocessing, on the model itself, and in optimization.

5.1.1 Preprocessing

In preprocessing we choose to apply image-wise normaliza-
tion as opposed to pixel-wise normalization because pixel-
wise normalization loses relative spatial information - the
model struggled to reach 10% in early stages of training.
We choose to mirror our inputs across each spatial axis with
a probability of 0.75 as we saw that this provided sufficient
data augmentation for the model to be robust on the vali-
dation set. Our final training set is comprised of 3 random
crops per image to be used as training data (the same crops
are made at validation), as opposed to 1 used in [10]. We
decide to sample more crops to make our model and metrics
less biased.

5.1.2 Model

For the model, we first choose to downsample with max
pooling instead of strided convolution. Max pooling tends
to outperform average pooling as is common for CNN ar-
chitectures as explained in [15]. We opted away from
strided convolution as done in [10] because it adds a large
number of trainable parameters that do little to improve per-
formance and make training more difficult. Correspond-
ingly, we also choose to use linear upsampling for the de-
coder instead of strided deconvolution. We experiment with
group normalization and batch normalization, finding that
group normalization with a group size of 8 is preferable to
batch normalization [16], which is ineffective with a batch
size of 1. We use a filter size of 3 as is in [11, 10] as it fa-
cilitates more gradual information loss than a filter size of
5 [12]. A l2-regularization scale of 1e − 5 is sufficient to
prevent severe overfitting to the training set.

5.1.3 Optimization

We train for a maximum of 300 epochs with early stopping
and a linear annealing learning rate with a warmup for 10
epochs as described. We use a batch size of 1 as storing
activations due to memory constraints.

5.2. Metrics

The primary metric we use is the dice coefficient, as it
is the evaluation metric of choice in [1]. We also report
precision and recall, which provide additional insights into
the strengths as well as shortcomings of our segmentations.

5.3. Quantitative Results

We first observe that we reach a dice score coefficient
of 64% on the validation set after 45 epochs of training.
Our training dice is slightly higher at 72% showing some
overfit but an generally well-regularized model. This out-
performs our baseline which achieved 60% dice score coef-
ficient. We also observe a steadily declining loss curve over
45 epochs. As to be expected, our training loss is lower
than our validation loss by about 0.5, however, the curves
are sufficiently close to provide good out-of-sample perfor-
mance. Our recall is nearly perfect, reflecting that the model
is able to classify positive examples well. However, our pre-
cision is slightly lower, indicating a sizable number of false
positives. However, compared to the baseline precision of
35%, we significantly improve the precision of the model,
accomplishing the goals of the Stanford Cancer Institute.

5.4. Segmentations

First, comparing our output segmentations to the gold
standard, we qualitatively observe that our masks do well



(a) Baseline segmentation
on BraTS sample, flair
modality, axial view (tu-
mor core)

(b) Baseline segmentation
on BraTS sample, flair
modality, axial view (en-
chancing tumor)

(c) Baseline segmentation
on BraTS sample, flair
modality, axial view
(whole tumor)

to approximate the true lesion region. Concretely, we ac-
curately segment most of the orange, outermost, “whole tu-
mor” subregion with undersegmenations in left side of the
axial segmentation, as our lower precision metric suggests,
and very minor oversegmentation on the right of the sagittal
view. Our model also does well on the white, tumor core
subregion with some minor breakages where there should
be a wholly contiguous white subregion.

Compared to the existing baseline our model is vastly
more precise. Each of the three subregion masks is dis-
played separately. Unfortunately, the baseline implementer
was unable to provide us with ground truth segmentations
for their data instances. However their model output seg-
mentations demonstrate that, clearly, the tumor core seg-
mentation is unable to highlight any particular well-formed
region. Additionally, the whole tumor segmentation appears
to struggle in differentiating between what should be la-
belled as whole tumor subregion and what should be back-
ground with no label.

6. Conclusion and Future Work
We confirm the effectiveness of encoder-decoder convo-

lutional architectures in semantic segmentation as well as
the regularization effect of the variational autoencoder on
the encoder. We also conclude that learning rate warmup
is essential when working with complex models and aug-
mented data. Halving the number of convolutional filters

(a) Model segmentation
on BraTS sample, flair
modality, axial view

(b) Gold segmentation
on BraTS sample, flair
modality, axial view

(c) Model segmentation
on BraTS sample, t1-post
modality, sagittal view

(d) Gold segmentation on
BraTS sample, t1-post
modality, sagittal view

throughout the model as compared to [10] evidently pro-
vided a simplification well-suited for the task. Using nor-
malization techniques such has He initialization for ReLU
layers as well as group normalization for activations facil-
itated in the convergence of the model. Adding Squeeze-
Excitation layers also showed to be useful in offering addi-
tional information to activations deep in the network about
which channel dimensions were most important to the com-
putation. Lastly, reordering the convolutional layers and
downsampling using max pooling as opposed to strided
convolution did not present any clear disadvantages while
simplifying the network and ensured that inputs were being
normalized at each layer in the network.

There are many things that might be improved upon with
our model. The focal loss, as proposed in [8], is designed
to address extreme foreground-background class imbalance
by preventing easy negatives, namely the large brain MRI
background, from overwhelming the detector during train-
ing allowing it to focus on the sparse set of hard examples.
We believe adding this objective to the modified dice loss
formulation would help the model focus on oversegmented
false positives and increase the model precision. Another
avenue for experimentation is using feature visualization
such as class activation maps as well as saliency maps to
provide more interpretability to the model. This could aid
in the creation of human-made features to supplement the
hierarchical features learned by the network, as well as help
professionals in the Stanford Cancer Institute better under-
stand the model’s decisions.
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